Álgebra.
Es la rama de la matemática que estudia la combinación de elementos de estructuras abstractas acorde a ciertas reglas. Originalmente esos elementos podían ser interpretados como números o cantidades, por lo que el álgebra en cierto modo originalmente fue una generalización y extensión de la aritmética. En el álgebra moderna existen áreas del álgebra que en modo alguno pueden considerarse extensiones de la aritmética (álgebra abstracta, álgebra homológica, álgebra exterior, etc.).
1.- Polinomios.
Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.
Una expresión algebraica es una combinación de letras y números ligadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación.
Las expresiones algebraicas nos permiten, por ejemplo, hallar áreas y volúmenes.
Longitud de la circunferencia: 2πr, donde r es el radio de la circunferencia.
Área del cuadrado: S = l2, donde l es el lado del cuadrado.
Volumen del cubo: V = a3, donde a es la arista del cubo.
2. Factorización de un polinomio.
Consiste en aplicar la propiedad distributiva:
a · b + a · c + a · d = a (b + c + d)
Descomponer en factores sacando factor común y hallar las raíces
1. x3 + x2 = x2 (x + 1)
La raíces son: x = 0 y x = −1
2. 2x4 + 4x2 = 2x2 (x2 + 2)
Sólo tiene una raíz x = 0; ya que el polinomio, x2 + 2, no tiene ningún valor que lo anule; debido a que al estar la x al cuadrado siempre dará un número positivo, por tanto es irreducible.
3. x2 − ax − bx + ab = x (x − a) − b (x − a) = (x − a) · (x − b)
La raíces son x = a y x = b.
Diferencia de cuadrados
Una diferencia de cuadrados es igual a suma por diferencia.
a2 − b2 = (a + b) · (a − b)
Ejemplos
Descomponer en factores y hallar las raíces
1. x2 − 4 = (x + 2) · (x − 2)
Las raíces son x = −2 y x = 2
2. x4 − 16 = (x2 + 4) · (x2 − 4) =
= (x + 2) · (x − 2) · (x2 + 4)
Las raíces son x = −2 y x = 2
Trinomio cuadrado perfecto
Un trinomio cuadrado perfecto es igual a un binomio al cuadrado.
a2 ± 2 a b + b2 = (a ± b)2
Ejemplos
Descomponer en factores y hallar las raíces
1.
La raíz es x = −3, y se dice que es una raíz doble.
2.
La raíz es x = 2.
Ecuaciones de Primer Grado.
Una igualdad se compone de dos expresiones unidas por el signo igual.
2x + 3 = 5x − 2
Una igualdad puede ser:
Falsa:
Ejemplo
2x + 1 = 2 · (x + 1)
2x + 1 = 2x + 2
1≠2.
Cierta
Ejemplo
2x + 2 = 2 · (x + 1)
2x + 2 = 2x + 2
2 = 2
Ecuaciones exponenciales.
Una ecuación exponencial es aquella ecuación en la que la incógnita aparece en el exponente.
Para resolver una ecuación exponencial vamos a tener en cuenta:
1.
2.
3. Las propiedades de las potencias.
a0 = 1
a1 = a
am · a n = am+n
am : a n = am - n
(am)n = am · n
an · b n = (a · b) n
an : b n = (a : b) n
Logaritmos.
El logaritmo de un número, en una base dada, es el exponente al cual se debe elevar la base para obtener el número.
Siendo a la base, x el número e y el logarítmo.
Los logarítmos decimales tienen base 10. Se representan por log (x).
Los logarítmos neperianos tienen base e. Se representan por ln (x) o L(x).